Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let $p$ be a prime and $F$ be a field of characteristic $p$. Show that $f(x)=x^{p^{n}}-x$ over $F$ has distinct zeros.
2. Let $p$ be a prime and $F=Z_{p}(t)$, the field of quotients of the ring $Z_{p}[x]$, and let $f(x)=$ $x^{p}-t$. Prove that $f(x)$ is irreducible over $F$ and has a multiple zero in $K=F[x] /\left\langle x^{p}-t\right\rangle$.
3. Find the minimal polynomial for $\sqrt{-1}+\sqrt{3}$ over $\mathbb{Q}$ and prove that that the minimal polynomial is irreducible over $\mathbb{Q}$.
4. Find the minimal polynomial for $\sqrt[3]{2}+\sqrt[3]{4}$ over $\mathbb{Q}$ and prove that that the minimal polynomial is irreducible over $\mathbb{Q}$.
5. Let $a$ be a complex number that is algebraic over $\mathbb{Q}$. Show that $\sqrt{a}$ is algebraic over $\mathbb{Q}$ and deduce that $\sqrt[2 n]{a}$ is algebraic over $\mathbb{Q}$.
6. Let $F$ be a field and let $\alpha$ and $\beta$ be transcendental numbers over $F$. Prove that either $\alpha \beta$ or $\alpha+\beta$ is also transcendental over $F$.
7. Let $p(x)=x^{3}-2$. Show that $p(x) \in \mathbb{Q}[x]$ is irreducible. Compute the splitting field of $p(x)$ over $\mathbb{Q}$ and construct the Galois group of $p(x)$ over $\mathbb{Q}$. Finally construct the lattice diagram for splitting field over $\mathbb{Q}$ and the lattice diagram for the Galois group.
8. Let $p(x)=x^{4}-7 x^{2}+10$. Show that $p(x) \in \mathbb{Q}[x]$ is reducible. Compute the splitting field of $p(x)$ over $\mathbb{Q}$ and construct the Galois group of $p(x)$ over $\mathbb{Q}$. Finally construct the lattice diagram for splitting field over $\mathbb{Q}$ and the lattice diagram for the Galois group.
9. Let $p$ be an odd prime. Set $q(x)=x^{p}-1$. Show that $q(x) \in \mathbb{Q}[x]$ is reducible. Compute the splitting field of $q(x)$ over $\mathbb{Q}$ and construct the Galois group of $q(x)$ over $\mathbb{Q}$. Finally construct the lattice diagram for splitting field over $\mathbb{Q}$ and the lattice diagram for the Galois group.
